Regular Article – Nuclear Structure and Reactions

Super-allowed α decay above doubly-magic ¹⁰⁰Sn and properties of ¹⁰⁴Te = ¹⁰⁰Sn $\otimes \alpha$

P. Mohr^a

Diakoniekrankenhaus, D-74523 Schwäbisch Hall, Germany

Received: 15 November 2006 / Revised: 20 December 2006 Published online: 25 January 2007 – © Società Italiana di Fisica / Springer-Verlag 2007 Communicated by W. Nazarewicz

Abstract. α -decay half-lives for ^{104,105,106}Te and ^{108,109,110}Xe close above the doubly-magic ¹⁰⁰Sn are calculated from systematic double-folding potentials. The derived α preformation factors are compared to results for ^{212,213,214}Po and ^{216,217,218}Rn above the doubly-magic ²⁰⁸Pb. α -decay energies of $Q_{\alpha} = 5.42 \pm 0.07$ MeV and 4.65 ± 0.15 MeV are predicted for ¹⁰⁴Te and ¹⁰⁸Xe; the corresponding half-lives are $T_{1/2} \approx 5$ ns for ¹⁰⁴Te and of the order of 60 μ s for ¹⁰⁸Xe. Additionally, the properties of rotational bands in ¹⁰⁴Te are analyzed, and the first excited 2⁺ state in ¹⁰⁴Te is predicted at $E_x = 650 \pm 40$ keV; it decays preferentially by γ emission with a reduced transition strength of 10 Weisskopf units to the ground state of ¹⁰⁴Te and with a minor branch by α emission to the ground state of ¹⁰⁰Sn.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 21.10.Tg Lifetimes – 27.60.+j $90 \le A \le 149$ – 21.60.Gx Cluster models

1 Introduction

Studies of α -decay properties of nuclei with $Z \approx N$ in the mass region above $A \approx 100$ have been stimulated by recent experimental progress: Seweryniak et al. [1] have detected the α -decay of ¹⁰⁵Te at the Argonne fragment analyzer, and Liddick *et al.* [2] have analzed the α -decay chain 109 Xe(α) 105 Te(α) 101 Sn at the recoil mass spectrometer of the Holifield radioactive ion beam facility. In both papers the measured α -decay half-lives are interpreted as indication for super-allowed α -decay in the vicinity of the doubly-magic nucleus ¹⁰⁰Sn with Z = N = 50. Whereas the larger experimental uncertainties in [1] allowed only to conclude "a modest enhancement of α -decay rates toward the N = Z line", the latest data of [2] clearly confirm the super-allowed α -decay of ¹⁰⁵Te by comparison with the analogous α -decay of ²¹³Po. A first theoretical report by Xu and Ren [3] is based on improved folding potentials, and they find an increased α preformation factor for N = Z nuclei.

The present study reanalyzes the new experimental data [1,2] using a similar model as [3] in combination with double-folding potentials which are close to the results of elastic scattering data on $N \approx Z$ data in the $A \approx 100$ mass region (⁹²Mo [4], ¹⁰⁶Cd [5], ¹¹²Sn [6]). The results further confirm the super-allowed α -decay around ¹⁰⁰Sn. The systematic properties of the double-folding potentials allow a prediction of the α -decay energy of ¹⁰⁴Te

and ¹⁰⁸Xe with relatively small uncertainties. However, the prediction of the α -decay half-lives has still considerable uncertainties because of the exponential dependence on the α -decay energy. In addition, α cluster properties of the nucleus ¹⁰⁴Te = ¹⁰⁰Sn $\otimes \alpha$ can be predicted in a similar way as in [7,8] for ⁹⁴Mo = ⁹⁰Zr $\otimes \alpha$. In particular, the excitation energy of the first excited 2⁺ state in ¹⁰⁴Te and its decay properties by γ and α emission are calculated. These decay properties have noticeable influence on the experimental determination of the α -decay of ¹⁰⁴Te.

2 α -decay half-lives

In a semi-classical approximation the α -decay width Γ_{α} is given by the following formulae [9]:

$$\Gamma_{\alpha} = PF \frac{\hbar^2}{4\mu} \exp\left[-2\int_{r_2}^{r_3} k(r) \mathrm{d}r\right] \tag{1}$$

with the preformation factor P, the normalization factor F

$$F \int_{r_1}^{r_2} \frac{\mathrm{d}r}{2\,k(r)} = 1 \tag{2}$$

and the wave number k(r)

$$k(r) = \sqrt{\frac{2\mu}{\hbar^2} |E - V(r)|}.$$
 (3)

 μ is the reduced mass and E is the decay energy of the α -decay which was taken from the mass table of ref. [10]

^a e-mail: WidmaierMohr@compuserve.de

and the recent experimental results of [1,2]. The r_i are the classical turning points. For $0^+ \rightarrow 0^+$ s-wave decay the inner turning point is at $r_1 = 0$. r_2 varies around 7 fm, and r_3 varies strongly depending on the energy. The decay width Γ_{α} is related to the half-life by the well-known relation $\Gamma_{\alpha} = \hbar \ln 2/T_{1/2,\alpha}$. Following eq. (1), the preformation factor may also be obtained as

$$P = \frac{T_{1/2,\alpha}^{\text{calc}}}{T_{1/2,\alpha}^{\exp}},\tag{4}$$

where Γ_{α} or $T_{1/2,\alpha}^{\text{calc}}$ are calculated from eq. (1) with P = 1. For completeness, I define the here predicted half-life for unknown nuclei as $T_{1/2,\alpha}^{\text{pre}} = T_{1/2,\alpha}^{\text{calc}}/P$. Further details of the model can be found in [11,12].

The potential V(r) in eq. (3) is given by

$$V(r) = V_N(r) + V_C(r) = \lambda V_F(r) + V_C(r), \quad (5)$$

where the nuclear potential V_N is the double-folding potential V_F multiplied by a strength parameter $\lambda \approx$ 1.1–1.3 [13]. The nuclear densities have been taken from [14] in the same parametrization as in [12] for all nuclei under study. V_C is the Coulomb potential in the usual form of a homogeneously charged sphere with the Coulomb radius R_C chosen the same as the *rms* radius of the folding potential V_F . For decays with angular momenta $L \neq 0$ an additional centrifugal potential $V_L = L(L+1)\hbar^2/(2\mu r^2)$ is used.

The potential strength parameter λ of the folding potential was adjusted to the energy of the α particle in the α emitter $(A + 4) = A \otimes \alpha$. The number of nodes of the bound-state wave function was taken from the Wildermuth condition

$$Q = 2N + L = \sum_{i=1}^{4} (2n_i + l_i) = \sum_{i=1}^{4} q_i, \qquad (6)$$

where Q is the number of oscillator quanta, N is the number of nodes and L the relative angular momentum of the α -core wave function, and $q_i = 2n_i + l_i$ are the corresponding quantum numbers of the nucleons in the α cluster. I have taken q = 4 for 50 < Z, $N \le 82$, q = 5 for 82 < Z, $N \le 126$ and q = 6 for N > 126, where Z and N are the proton and neutron number of the daughter nucleus. This leads to Q = 16 for the nuclei above ¹⁰⁰Sn and Q = 22 for the nuclei above ²⁰⁸Pb.

The results for the nuclei ^{108,109,110}Xe and ^{104,105,106}Te above the doubly-magic ¹⁰⁰Sn and for ^{216,217,218}Rn and ^{212,213,214}Po above the doubly-magic ²⁰⁸Pb are listed in table 1. The derived preformation factors P are shown in fig. 1 as a function of ΔA_D , where ΔA_D gives the distance from a double shell closure. *E.g.*, the preformation factor for the α -decay ¹⁰⁶Te \rightarrow ¹⁰²Sn can be found at $\Delta A_D = 2$ because the daughter nucleus ¹⁰²Sn has two nucleons above the doubly-magic ¹⁰⁰Sn. The same value of $\Delta A_D = 2$ is found for the α -decay ²¹⁴Po \rightarrow ²¹⁰Pb. Thus, a comparison between the results above A = 100 and above A = 208 can be done easily.

Fig. 1. Comparison of preformation factors P for the α -decays of ^{104,105,106} Te and ^{108,109,110} Xe above doubly-magic ¹⁰⁰ Sn (circles) and ^{212,213,214} Po and ^{216,217,218} Rn above doubly-magic ²⁰⁸ Pb (squares), derived from eq. (4). The open circles for ¹⁰⁴ Te and ¹⁰⁸ Xe indicate assumed values: P = 10% for ¹⁰⁴ Te and P = 5% for ¹⁰⁸ Xe. The lines are to guide the eye only.

The systematic behavior of the potential parameters is one main advantage of the folding potentials. The potential strength parameter λ and the normalized volume integral per interacting nucleon pair

$$J_R = \frac{\lambda}{A_P A_T} \int V_F(r) \,\mathrm{d}^3 r \tag{7}$$

show values around $\lambda \approx 1.10$ and $J_R \approx 303 \,\mathrm{MeV} \,\mathrm{fm}^3$ for the systems $^{100,101,102} \mathrm{Sn} \otimes \alpha$ and $^{104,105,106} \mathrm{Te} \otimes \alpha$ above A = 100; the variations of λ and J_R are less than 1% and allow thus extrapolations with limited uncertainties. The same range of variations of less than 1% is found for the considered systems above A = 208, where $\lambda \approx 1.24$ and $J_R \approx 327 \,\mathrm{MeV} \,\mathrm{fm}^3$.

The analysis of the $0^+ \rightarrow 0^+$ decays of the eveneven systems is straightforward. The ground-state transitions dominate because these transitions have the maximum energy, and the decay is not hindered by an additional centrifugal barrier because L = 0. In both decays, ²¹⁷Rn \rightarrow ²¹³Po and ²¹³Po \rightarrow ²⁰⁹Pb, the ground-state transitions $9/2^+ \rightarrow 9/2^+$ with L = 0 also dominate. However, the analysis of the α -decays ¹⁰⁹Xe \rightarrow ¹⁰⁵Te and ¹⁰⁵Te \rightarrow ¹⁰¹Sn requires further study.

Two α groups have been detected in the decay of $^{109}\text{Xe} \rightarrow ^{105}\text{Te}$ which have been interpreted as the L = 0 and L = 2 decays from the 7/2⁺ ground state of ^{109}Xe to the 5/2⁺ ground state and 7/2⁺ first excited state in ^{105}Te [2]. From eq. (1) one calculates $T_{1/2,\alpha}^{\text{calc}} = 5.71 \times 10^{-4} \text{ s}$ for the L = 2 ground-state decay and $T_{1/2,\alpha}^{\text{calc}} = 1.42 \times 10^{-3} \text{ s}$ for the L = 0 decay to the first excited state, in both cases using P = 1. The theoretical branching is 71% for the ground-state. This is in excellent agreement with the experimental values of $(70 \pm 6)\%$ for the ground-state branch to the first excited state.

Decay	$J_i {\rightarrow} J_f$	E	λ	J_R	$T_{1/2}^{\text{exp}}$ or $T_{1/2}^{\text{pre}}$	$T_{1/2}^{\mathrm{calc}}$	P
		(MeV)		$({ m MeVfm^3})$	(s)	(s)	(%)
$^{218}\text{Rn}{\rightarrow}^{214}\text{Po}$	$0^{+} \rightarrow 0^{+}$	7.263	1.2431	328.2	$(3.5 \pm 0.5) \times 10^{-2}$	3.41×10^{-3}	9.74 ± 1.39
$^{217}\text{Rn}{\rightarrow}^{213}\text{Po}$	$9/2^{+} \rightarrow 9/2^{+}$	7.887	1.2390	327.2	$(5.4 \pm 0.5) \times 10^{-4}$	3.30×10^{-5}	6.11 ± 0.57
$^{216}\text{Rn} \rightarrow ^{212}\text{Po}$	$0^{+} \rightarrow 0^{+}$	8.200	1.2386	327.2	$(4.5 \pm 0.5) \times 10^{-5}$	4.07×10^{-6}	9.04 ± 1.01
$^{214}\text{Po}{\rightarrow}^{210}\text{Pb}$	$0^+ \rightarrow 0^+$	7.834	1.2384	327.3	$(1.64 \pm 0.02) \times 10^{-4}$	8.32×10^{-6}	5.06 ± 0.06
$^{213}\text{Po}{\rightarrow}^{209}\text{Pb}$	$9/2^{+} \rightarrow 9/2^{+}$	8.536	1.2333	326.1	$(4.2 \pm 0.8) \times 10^{-6}$	9.38×10^{-8}	2.23 ± 0.43
$^{212}\text{Po}{\rightarrow}^{208}\text{Pb}$	$0^+ \rightarrow 0^+$	8.954	1.2316	325.7	$(2.99 \pm 0.02) \times 10^{-7}$	8.70×10^{-9}	2.96 ± 0.02
$^{110}\mathrm{Xe}{\rightarrow}^{106}\mathrm{Te}$	$0^+ \rightarrow 0^+$	3.885	1.0981	302.4	$\approx 4 \times 10^{-1^{a}}$	1.29×10^{-2}	≈ 3.2
$^{109}\mathrm{Xe}{\rightarrow}^{105}\mathrm{Te}$	$7/2^+ \rightarrow 7/2^+$	4.067	1.1006	303.2	$(1.3 \pm 0.2) \times 10^{-2}$	$1.42 \times 10^{-3^{b}}$	$\approx 3^b$
$^{108}\mathrm{Xe}{ ightarrow}^{104}\mathrm{Te}$	$0^{+} \rightarrow 0^{+}$	4.65^{c}	1.099	303.4	$\approx 60 \mu \mathrm{s}^{c,d}$	$\approx 3 \times 10^{-6^d}$	$\approx 5^e$
$^{106}\mathrm{Te}{\rightarrow}^{102}\mathrm{Sn}$	$0^{+} \rightarrow 0^{+}$	4.290	1.1026	304.5	$(6.0^{+3.0}_{-1.0}) \times 10^{-5}$	8.66×10^{-6}	$14.4^{+3.0}_{-4.8}$
$^{105}\text{Te}{\rightarrow}^{101}\text{Sn}$	$5/2^+ \rightarrow 5/2^+$	4.889	1.1006	304.1	$(6.2 \pm 0.7) \times 10^{-7}$	3.07×10^{-8}	4.95 ± 0.56
$^{104}\mathrm{Te}{\rightarrow}^{100}\mathrm{Sn}$	$0^+ \rightarrow 0^+$	5.42^{c}	1.100	304.0	$\approx 5 \mathrm{ns}^c$	$\approx 5 \times 10^{-10}$	$\approx 10^e$

Table 1. α -decay half-lives for nuclei above ¹⁰⁰Sn and ²⁰⁸Pb.

^{*a*} α -decay branch only.

^b Branching to $7/2^+$: see sect. 2.

^c Predicted values; see sect. 3.

 d Huge uncertainty from unknown energy E; see sect. 3.

^e Assumed values; see fig. 1.

state [2]. In fig. 1 I show the preformation factor P in ¹⁰⁹Xe for the L = 0 decay only because all the other decays in fig. 1 have the same L = 0.

For the α -decay $^{105}\text{Te} \rightarrow ^{101}\text{Sn}$ only one α group has been detected in [2], and an upper limit of 5% is given for other decay branches. The α -decay strength increases with increasing energy and decreasing angular momentum. If only one decay branch is observed, one may conclude that this branch corresponds to a L = 0 ground-state transition. Consequently, $J^{\pi}(^{101}\text{Sn}) = J^{\pi}(^{105}\text{Te}) = 5/2^+$ [2]. This is in agreement with a recent theoretical prediction [15]. The derived values for the potential strength parameter λ and the volume integral J_R fit into the systematics and thus strengthen the above tentative spin assignment.

The results in fig. 1 and table 1 confirm the superallowed nature of α -decay near the doubly-magic ¹⁰⁰Sn. For ^{216,217,218}Rn one finds preformation values P between about 5% and 10%. Surprisingly, P slightly decreases for ^{212,213,214}Po to values between about 2% and 5% when approaching the doubly-magic daughter nucleus ²⁰⁸Pb. For ^{109,110}Xe relatively small values of $P \approx 3\%$ are found. When approaching the doubly-magic daughter ¹⁰⁰Sn, the preformation values P show the expected behavior and increase to about 5% to 15% for ^{105,106}Te. A comparison between the preformation factors P for the Po isotopes and the Te isotopes shows that

$$P(\text{Te}) \approx 3 \times P(\text{Po})$$
 (8)

in agreement with the conclusions of [1, 2].

3 Predicted half-lives of ¹⁰⁴Te and ¹⁰⁸Xe

The systematic behavior of the potential parameters λ and J_R in combination with the shown preformation factors P (see fig. 1) enables the extrapolation to the decays $^{108}\text{Xe} \rightarrow ^{104}\text{Te} \rightarrow ^{100}\text{Sn}$ with limited uncertainties.

For the prediction of the α -decay energies I use a local potential which is adjusted to the neighboring nuclei.

The potentials for $^{105}\text{Te} = ^{101}\text{Sn} \otimes \alpha$ and $^{106}\text{Te} = ^{102}\text{Sn} \otimes \alpha$ are practically identical. From the average $J_R = 304.29 \text{ MeV fm}^3$ one obtains the α -decay energy of $^{104}\text{Te} \ E = 5.354 \text{ MeV}$, whereas a linear extrapolation yields a slightly weaker potential $J_R = 303.76 \text{ MeV fm}^3$ and slightly higher energy E = 5.481 MeV. Combining these results, a reasonable prediction of the α -decay energy of ^{104}Te is $E = 5.42 \pm 0.07 \text{ MeV}$.

From the lower decay energy E = 5.354 MeV one obtains $T_{1/2,\alpha}^{\text{calc}} = 7.87 \times 10^{-10}$ s from eq. (1) with P = 1; the higher decay energy yields $T_{1/2,\alpha}^{\text{calc}} = 3.13 \times 10^{-10}$ s. The uncertainty of the α -decay energy of about 70 keV translates to an uncertainty in the calculated half-life of about a factor of 1.5. For a prediction of the α -decay half-life one has to find a reasonable assumption for the preformation factor P. Following the pattern of P in fig. 1, I use P = 10% with an estimated uncertainty of a factor of two. Combining the above findings, the predicted half-life of 104 Te is $T_{1/2,\alpha}^{\text{pre}} = 5$ ns with an uncertainty of about a factor three. The uncertainty of the predicted half-life is composed of similar contributions for the unknown α -decay energy and the assumed preformation factor P.

The potentials for $^{109}\text{Xe} = ^{105}\text{Te} \otimes \alpha$ and $^{110}\text{Xe} = ^{106}\text{Te} \otimes \alpha$ change by about 1 MeV fm^3 ; this is still very similar, but not as close as in the above $^{105}\text{Te} = ^{101}\text{Sn} \otimes \alpha$ and $^{106}\text{Te} = ^{102}\text{Sn} \otimes \alpha$ cases. Repeating the above procedure, one finds the α -decay energy E = 4.792 MeV from the average $J_R = 302.82 \text{ MeV fm}^3$ and E = 4.506 MeV from the extrapolated $J_R = 303.96 \text{ MeV fm}^3$. The calculated half-lives using P = 1 are $T_{1/2,\alpha}^{\text{calc}} = 7.40 \times 10^{-7} \text{ s}$ for the higher energy E = 4.792 MeV and $T_{1/2,\alpha}^{\text{calc}} = 1.18 \times 10^{-5} \text{ s}$ for the lower energy E = 4.506 MeV. Combining these

Fig. 2. Volume integral J_R and energy E in dependence on the mass number A_D from ¹⁰²Sn to ¹²⁴Sn (See text).

results, the α -decay energy is $E = 4.65 \pm 0.15$ MeV. Together with a preformation factor of about P = 5% the α -decay half-life is predicted to be of the order of 100 μ s. However, the uncertainty of the decay energy of 150 keV leads to an uncertainty in the half-life of a factor of 4; thus it is impossible to predict the α -decay half-life of ¹⁰⁸Xe better than this uncertainty.

It is interesting to compare the predictions for the α -decay properties of 104 Te with the results of [3]. In [3] the α -decay energy is linearly extrapolated from the neighboring even-even Te isotopes 106,108,110 Te leading to E = 5.053 MeV. I have repeated this procedure for the Te isotopes 106 Te to 126 Te. The α -decay energies and derived volume integrals J_R are shown in fig. 2. For an extrapolation to the α -decay of 104 Te I have fitted the data in fig. 2 using a polynomial

$$E(A_D) = \sum_{i=0}^{n} a_i \left(A_D - 100\right)^i \tag{9}$$

and a corresponding formula for the volume integral J_R . It has turned out that the reduced χ^2 of the fit improves when one increases the number n up to n = 4; no further significant improvement is found for larger values of n. These fourth-order polynomials for E and J_R are shown as lines in fig. 2. The resulting numbers for $A_D = 100$, *i.e.* the ¹⁰⁴Te \rightarrow ¹⁰⁰Sn α -decay, are E = 5.379 MeV and $J_R = 304.4$ MeV fm³ which is within the error bars of the values derived above from the neighboring potentials.

Because of the higher α -decay energy derived in this work, the α -decay half-life of ¹⁰⁴Te is about a factor of 10 shorter compared to the predictions of [3]. Experimental data are required to distinguish between the predictions of this work and ref. [3].

The results for ¹⁰⁸Xe roughly agree with the predictions in [3]: Xu *et al.* predict the α -decay energy E = 4.44 MeV compared to $E = 4.65 \pm 0.15$ MeV in this work,

Table 2. Comparison of α -decay energies from a local extrapolation using folding potentials (this work) to predictions of global mass formula [16–20]. All energies are given in MeV.

	Exp. or this work	FRDM [17]	$\begin{array}{c} \mathrm{HFB-1}\\ [18,16] \end{array}$	HFB-2 [19]	DZ [20]
104 Te 105 Te 106 Te 108 Xe 109 Xe	5.42 ± 0.07^{a} 4.89 4.29 4.65 ± 0.15^{a} 4.22^{b}	6.12 6.31 6.01 5.53 4.81	$ \begin{array}{r} 4.85 \\ 4.91 \\ 4.72 \\ 4.69 \\ 4.23 \end{array} $	$ \begin{array}{r} 4.68 \\ 4.28 \\ 4.16 \\ 4.38 \\ 4.03 \end{array} $	5.24 4.91 4.60 4.93 4.62
$^{110}\mathrm{Xe}$	3.89	4.61	3.60	3.71	4.33

^{*a*} Predicted from folding potential.

 $^b\,$ From ground state in $^{109}{\rm Xe}$ to ground state in $^{105}{\rm Te}.$

and the predicted half-life in [3] is between 150 and 290 μ s which should be compared to the predicted half-life of $T_{1/2,\alpha}^{\rm pre} = 236 \,\mu$ s derived from the lower limit $E = 4.5 \,\text{MeV}$ of the energy with P = 5%.

4 Comparison to mass formulae

The α -decay energies of the folding calculation may be compared to predictions from global mass formulae. Here I restrict myself to the three selected mass formulae of the so-called Reference Input Parameter Library RIPL-2 of the IAEA [16] which are the Finite Range Droplet Model (FRDM) [17], the Hartree-Fock-Bogoliubov (HFB) method [18] in the versions of [16] and its latest update [19], and the simple 10-parameter formula of Duflo and Zuker (DZ) [20]. The results are listed in table 2.

The FRDM predictions seem to overestimate the experimental α -decay energies slightly, especially when approaching the doubly-magic core ¹⁰⁰Sn. The predictions of HFB-1 and HFB-2 are close to the experimental values, and also the simple 10-parameter parametrization DZ is in reasonable agreement with the data. The predictions from the folding potential calculation for ¹⁰⁴Te and ¹⁰⁸Xe are close to the average values of the above global mass models [16–20].

5 Accuracy of semi-classical half-lives

The results which are presented in table 1 and fig. 1 have been obtained using the semi-classical approximation of eq. (1) for the decay width Γ_{α} . From a fully quantummechanical analysis the decay width Γ_{α} is related to the energy dependence of a resonant scattering phase shift $\delta_L(E)$ by

$$\delta_L(E) = \arctan \frac{\Gamma_\alpha}{2(E_R - E)}.$$
 (10)

In practice, it is difficult to determine widths of the order of $1 \,\mu\text{eV}$ at energies of the order of several MeV because of numerical problems. For the system $^{104}\text{Te} = ^{100}\text{Sn} \otimes \alpha$ such an analysis is possible at the limits of numerical stability.

Fig. 3. Phase shift δ_L for the L = 0 partial wave for the system ${}^{104}\text{Te} = {}^{100}\text{Sn} \otimes \alpha$. The derived width from eq. (10) is $\Gamma = 1.36 \times 10^{-12} \text{ MeV}$. Note the extremely small stepsize of the calculation of $\Delta E = 1.0 \times 10^{-14} \text{ MeV}$! See text for details.

In fig. 3 the resonant behavior of the s-wave phase shift $\delta_{L=0}(E)$ is shown around the resonance energy $E_R =$ 5.481 MeV which is obtained in the potential with $J_R =$ 303.76 MeV (see sect. 3). The dots are obtained from solving the Schrödinger equation at $E = E_0 + i \times \Delta E$ with $E_0 = 5.481305851985$ MeV and $\Delta E = 10^{-14}$ MeV. The full line is a fit of data using eq. (10) where the resonance energy E_R and the width Γ_{α} have been adjusted. This yields $\Gamma_{\alpha} = 1.36 \,\mu\text{eV}$ and a corresponding half-life of $T_{1/2,\alpha}^{\text{calc}} = 0.336$ ns. The semi-classical approximation in eq. (1) gives $T_{1/2,\alpha}^{\text{calc}} = 0.313$ ns which is about 8% lower than the value from the fully quantum-mechanical calculation.

The validity of the semi-classical approximation for Γ_{α} in eq. (1) is confirmed for the α -decay of ¹⁰⁴Te by the above analysis of the scattering phase shift $\delta_L(E)$ with an uncertainty of less than 10%. For two other nuclei (⁸Be and ²¹²Po) the semi-classical approximation deviates by about 30% from the fully quantum-mechanical value. In all cases the semi-classical half-life is slightly shorter than the fully quantum-mechanical result.

In a detailed study on proton-decay half-lives of proton-rich nuclei [21] it has been shown that the semiclassical approximation agrees within about $\pm 10\%$ with the result of a direct calculation of the transition amplitude using the distorted-wave Born approximation (DWBA) formalism. Surprisingly, the agreement between the quantum-mechanical DWBA calculation and the semiclassical result becomes worse in [21] when an improved normalization factor from eq. (25) of [21] is used compared to the simple normalization factor in eq. (24) of [21] or eq. (2) in this work: For the case of 104 Te, the α -decay halflife in the semi-classical calculation changes from 0.313 ns using eq. (2) to 0.231 ns using eq. (25) of [21]; thus, the findings in [21] are confirmed.

6 Properties of $^{104}\text{Te} = {}^{100}\text{Sn} \otimes lpha$

From the given potential of the system $^{104}\text{Te} = ^{100}\text{Sn} \otimes \alpha$ it is not only possible to determine the α -decay half-life of the ground state. Following the formalism in [22], energies and electromagnetic decay properties of excited states in ^{104}Te can be predicted.

Table 3. Excitation energies $E_x = E - E(0^+)$ of excited states in ¹⁰⁴Te = ¹⁰⁰Sn $\otimes \alpha$ with Q = 16, 17, and 18.

J^{π}	Q	N	L	λ	$E \; (\mathrm{keV})$	E_x (keV)
0^+	16	8	0	1.1005	5354.2	0.0
2^{+}	16	$\overline{7}$	2	1.0915	6003.5	649.3
4^{+}	16	6	4	1.0825	6739.6	1385.4
6^{+}	16	5	6	1.0735	7565.2	2211.0
8^{+}	16	4	8	1.0645	8477.2	3123.0
10^{+}	16	3	10	1.0555	9469.2	4115.0
12^{+}	16	2	12	1.0465	10543.2	5189.0
14^{+}	16	1	14	1.0375	11731.2	6377.0
16^{+}	16	0	16	1.0285	13097.1	7742.9
1^{-}	17	8	1	1.0960	10951.4	5597.2
0^+	18	9	0	1.1005	$\approx 15{\rm MeV}^a$	$\approx 10{\rm MeV}^a$

^a Very broad

The ground-state wave function of ¹⁰⁴Te is characterized by Q = 2N + L = 16, see eq. (6). Further members of this Q = 16 band are expected with $J^{\pi} = 2^+, 4^+, \ldots, 16^+$. It has been observed that the potential strength parameter λ has to be varied slightly to obtain an excellent prediction of the excitation energies:

$$\lambda(L) = \lambda(L=0) - c \times L \tag{11}$$

with the constant $c \approx (3-5) \times 10^{-3}$ for neighboring $N = 50 \otimes \alpha$ nuclei ⁹⁴Mo = ⁹⁰Zr $\otimes \alpha$ [7,8], ⁹³Nb = ⁸⁹Y $\otimes \alpha$ [23], neighboring Z = 50 nuclei ¹¹⁶Te = ¹¹²Sn $\otimes \alpha$, and the systems ²⁰Ne = ¹⁶O $\otimes \alpha$ [24], ⁴⁴Ti = ⁴⁰Ca $\otimes \alpha$ [13], and ²¹²Po = ²⁰⁸Pb $\otimes \alpha$ [25].

For the following analysis I adopt $\lambda = 1.1005$ which corresponds to $J_R = 304.29 \text{ MeV fm}^3$ from the average of the two neighboring systems ${}^{105,106}\text{Te} = {}^{101,102}\text{Sn} \otimes \alpha$ and $c = (4.5 \pm 0.3) \times 10^{-3}$ from the neighboring nuclei ${}^{93}\text{Nb}$, ${}^{94}\text{Mo}$, and ${}^{116}\text{Te}$ above N = 50 or Z = 50 cores. Because the predicted excitation energies $E_x = E - E(0^+)$ (see table 3) are relative to the ground-state energy, the excitation energies do not change significantly when one varies $\lambda(L = 0)$ or J_R within the given uncertainties. The first excited 2^+ state in ${}^{104}\text{Te}$ is found at $E_x =$

The first excited 2^+ state in ¹⁰⁴Te is found at $E_x = 649 \text{ keV}$. From the uncertainty of the constant c in eq. (11) one can derive a very small uncertainty for the potential strength $\lambda(L = 2)$ and a resulting uncertainty of about 40 keV for the excitation energy E_x for the first 2^+ state. Somewhat larger uncertainties are found for $\lambda(L > 2)$; consequently, the uncertainty of the predicted excitation energies increases up to about 400 keV for the 16^+ state at $E_x = 8.55 \text{ MeV}$.

In addition, the 1⁻ and 0⁺ band heads of the bands with Q = 17 and Q = 18 are predicted at energies around $E_x = 5.60$ MeV and about 10 MeV. The 0⁺ state is very broad. It is difficult to estimate the uncertainty of the predicted energies of the 1⁻ and 0⁺ states with Q = 17and Q = 18 because usually the potential strength has to be slightly readjusted to obtain a good description of such bands. A rough estimate for the uncertainty is about 1 MeV which corresponds to an uncertainty of about 2% for the potential strength parameter λ . Following the formalism of ref. [22], reduced transition strengths of 10.1 W.u., 14.0 W.u., and 14.1 W.u. are calculated for the $2^+ \rightarrow 0^+$, $4^+ \rightarrow 2^+$, and $6^+ \rightarrow 4^+$ transitions in ¹⁰⁴Te. The corresponding radiation widths Γ_{γ} are slightly larger than the direct α -decay widths from the excited states in ¹⁰⁴Te to the ground state in ¹⁰⁰Sn. The γ -decay branching ratio

$$b_{\gamma} = \frac{\Gamma_{\gamma}}{\Gamma_{\gamma} + \Gamma_{\alpha}^{\text{pre}}} \tag{12}$$

is between 86% and 93% for the 2⁺ state, between 62% and 76% for the 4⁺ state, and between 48% and 62% for the 6⁺ state. This is an extremely important result for future experiments! If the γ -decay branch b_{γ} of the first 2⁺ state were small (*e.g.*, of the order of a few per cent), it would be extremely difficult to produce ¹⁰⁴Te in its ground state because ¹⁰⁴Te produced in excited states could directly decay to the ¹⁰⁰Sn ground state by α emission.

It is interesting to note that the predicted branchings b_{γ} are not very sensitive to the predicted excitation energy. E.g., if the excitation energy of the first excited 2^+ state in ¹⁰⁴Te is $E_x = 1$ MeV, the radiation width Γ_{γ} increases with E_{γ}^5 by a factor of about 9 and the width Γ_{α} increases by a factor of about 8 because of the reduced Coulomb barrier. Thus, b_{γ} values close to unity are very likely. Consequently, a direct production reaction like e.g. ⁵⁰Cr(⁵⁸Ni, 4n)¹⁰⁴Te similar to the experiment in [1] should be feasible. However, only the indirect production via the α -decay of ¹⁰⁸Xe in a reaction like, e.g., ⁵⁴Fe(⁵⁸Ni, 4n)¹⁰⁸Xe similar to [2] ensures the production of ¹⁰⁴Te in its ground state.

7 Conclusions

The systematic properties of folding potentials provide a powerful tool for the analysis of the system $^{104}\text{Te} = ^{100}\text{Sn} \otimes \alpha$ above the doubly-magic ^{100}Sn core. In particular, α -decay energies and half-lives can be predicted with relatively small uncertainties. The predicted α -decay energy for ^{104}Te is $E = 5.42 \pm 0.07 \text{ MeV}$, and the corresponding half-life is $T_{1/2,\alpha}^{\text{pre}} = 5 \text{ ns}$ with an uncertainty of a factor of three.

Excitation energies and decay properties of the members of the Q = 16 rotational band in 104 Te are calculated, and the predicted values have small uncertainties. For the first excited 2^+ state in 104 Te one obtains $E_x = 650 \pm 40 \text{ keV}$. The γ -decay strength to the ground state in 104 Te is about 10 Weisskopf units. The corresponding radiation width Γ_{γ} is about a factor of 10 larger than the α -decay width Γ_{α} to the ground state in 100 Sn. The finding that Γ_{γ} is larger than Γ_{α} for excited states in 104 Te is important for the experimental production of 104

The finding that Γ_{γ} is larger than Γ_{α} for excited states in ¹⁰⁴Te is important for the experimental production of ¹⁰⁴Te in its ground state and the measurement of the α decay half-life of ¹⁰⁴Te. The condition $\Gamma_{\gamma} > \Gamma_{\alpha}$ allows to use reactions which produce ¹⁰⁴Te in excited states because these states preferentially decay to the ¹⁰⁴Te ground state. However, only the indirect production of ¹⁰⁴Te via the α -decay of ¹⁰⁸Xe safely guarantees that ¹⁰⁴Te is produced in its ground state. I thank Z. Ren, Gy. Gyurky, and Zs. Fülöp for encouraging discussions and the referees for their constructive reports.

References

- D. Seweryniak, K. Starosta, C.N. Davids, S. Gros, A.A. Hecht, N. Hoteling, T.L. Khoo, K. Lagergren, G. Lotay, D. Peterson, A. Robinson, C. Vaman, W.B. Walters, P.J. Woods, S. Zhu, Phys. Rev. C 73, 061301(R) (2006).
- S.N. Liddick, R. Grzywacz, C. Mazzocchi, R.D. Page, K.P. Rykaczewski, J.C. Batchelder, C.R. Bingham, I.G. Darby, G. Drafta, C. Goodin, C.J. Gross, J.H. Hamilton, A.A. Hecht, J.K. Hwang, S. Ilyushkin, D.T. Joss, A. Korgul, W. Królas, K. Lagergren, K. Li, M.N. Tantawy, J. Thomson, J.A. Winger, Phys. Rev. Lett. **97**, 082501 (2006).
- 3. C. Xu, Z. Ren, Phys. Rev. C 74, 037302 (2006).
- Zs. Fülöp, Gy. Gyürky, Z. Máté, E. Somorjai, L. Zolnai, D. Galaviz, M. Babilon, P. Mohr, A. Zilges, T. Rauscher, H. Oberhummer, G. Staudt, Phys. Rev. C 64, 065805 (2001).
- G.G. Kiss, Zs. Fülöp, Gy. Gyürky, Z. Máté, E. Somorjai, D. Galaviz, A Kretschmer, K. Sonnabend, A. Zilges, Eur. Phys. J. A 27, 197 (2006).
- D. Galaviz, Zs. Fülöp, Gy. Gyürky, Z. Máté, P. Mohr, T. Rauscher, E. Somorjai, A. Zilges, Phys. Rev. C 71, 065802 (2005).
- 7. S. Ohkubo, Phys. Rev. Lett. 74, 2176 (1995).
- F. Michel, S. Ohkubo, G. Reidemeister, Prog. Theor. Phys. Suppl. 132, 7 (1998).
- S.A. Gurvitz, G. Kälbermann, Phys. Rev. Lett. 59, 262 (1987).
- A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003).
- 11. P. Mohr, Phys. Rev. C **61**, 045802 (2000).
- 12. P. Mohr, Phys. Rev. C **73**, 031301(R) (2006).
- U. Atzrott, P. Mohr, H. Abele, C. Hillenmayer, G. Staudt, Phys. Rev. C 53, 1336 (1996).
- H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables **36**, 495 (1987).
- 15. O. Kavatsyuk et al., GSI Report 2006-1 (to be published).
- T. Belgya et al., Handbook for calculations of nuclear reaction data, RIPL-2, IAEA-TECDOC-1506 (IAEA, Vienna, 2006) available online at http://www-nds.iaea.org/ RIPL-2/.
- P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995); http:// t2.lanl.gov/data/astro/molnix96/molnix.html.
- M. Samyn, S. Goriely, P.-H. Heenen, J.M. Pearson, F. Tondeur, Nucl. Phys. A **700**, 142 (2001).
- S. Goriely, M. Samyn, J.M. Pearson, M. Onsi, Nucl. Phys. A 750, 425 (2005); http://www-astro.ulb.ac.be/ Nucdata/Masses/.
- 20. J. Duflo, A.P. Zuker, Phys. Rev. C 52, 23 (1995).
- S. Åberg, P.B. Semmes, W. Nazarewicz, Phys. Rev. C 56, 1762 (1997); 58, 3011 (1998).
- B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. C 51, 559 (1995).
- 23. G.G. Kiss *et al.*, in preparation.
- 24. H. Abele, G. Staudt, Phys. Rev. C 47, 742 (1993).
- F. Hoyler, P. Mohr, G. Staudt, Phys. Rev. C 50, 2631 (1994).